The removal of heavy metal cations by natural zeolites.

نویسندگان

  • E Erdem
  • N Karapinar
  • R Donat
چکیده

In this study, the adsorption behavior of natural (clinoptilolite) zeolites with respect to Co(2+), Cu(2+), Zn(2+), and Mn(2+) has been studied in order to consider its application to purity metal finishing wastewaters. The batch method has been employed, using metal concentrations in solution ranging from 100 to 400 mg/l. The percentage adsorption and distribution coefficients (K(d)) were determined for the adsorption system as a function of sorbate concentration. In the ion exchange evaluation part of the study, it is determined that in every concentration range, adsorption ratios of clinoptilolite metal cations match to Langmuir, Freundlich, and Dubinin-Kaganer-Radushkevich (DKR) adsorption isotherm data, adding to that every cation exchange capacity metals has been calculated. It was found that the adsorption phenomena depend on charge density and hydrated ion diameter. According to the equilibrium studies, the selectivity sequence can be given as Co(2+) > Cu(2+) > Zn(2+) > Mn(2+). These results show that natural zeolites hold great potential to remove cationic heavy metal species from industrial wastewater.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural Zeolites Application as Sustainable Adsorbent for Heavy Metals Removal from Drinking Water

Background: There are great resources of natural zeolite in Iran. Zeolite, an inorganic ion-exchanger, may be used as a suitable technical-economical solution for water treatment in many regions of Iran. In this study, the characterization of natural zeolite natrolite and the feasibility of removing hardness, cations, and anions were investigated. Methods: First, zeolite composition and type...

متن کامل

Removal of Heavy Metal Particles by LTJ, ANA, SVR, BEC and MER zeolites particles: A Molecular Dynamics Simulation Study

In present study, molecular dynamics simulation of Cadmium (II), Lead (II) and Copper (II) removal from aqueous electrolyte solutions using the ion-exchange process with the zeolite particles was done. The results showed that, most of the particles had the highest affinity of ion exchanging with Lead (II) and the lowest affinity with Copper (II). The calculated mean ion-exchange ratios showed t...

متن کامل

Natural Zeolites Application as Sustainable Adsorbent for Heavy Metals Removal from Drinking Water

Background: There are great resources of natural zeolite in Iran. Zeolite, an inorganic ion-exchanger, may be used as a suitable technical-economical solution for water treatment in many regions of Iran. In this study, the characterization of natural zeolite natrolite and the feasibility of removing hardness, cations, and anions were investigated. Methods: First, zeolite composition and type we...

متن کامل

SURFACE MODIFICATION OF ANALCIME FOR REMOVAL OF NITRITE AND NITRATE FROM AQUEOUS SOLUTIONS

The capacity of natural zeolites to absorb anionic pollutants from water is limited. This limitation can be overcome by modifying the surface of the minerals with organic cations. In this research, natural zeolite, Analcime was used for removing the nitrate and nitrite impurities from aqueous solutions. The surface of the zeolite was modified by tetramethylammonium and tetraethylammonium ions t...

متن کامل

Heavy metal adsorption by clinoptilolite from aqueous solutions

The present investigation has been carried out to assess a chromium, cobalt, and cadmium from wastewaters by natural and modified zeolites were examined by using batch type method. A clinoptilolite type synthetic / natural zeolite were pretreated with HCl and HNO3 to improve the adsorption capacity for heavy metals. The removal efficiencies and kinetics of heavy metals such as chromium, cobalt ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 280 2  شماره 

صفحات  -

تاریخ انتشار 2004